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1. Introduclion.-Dungey' in his remarkable report of 1954 has discussed in 
some detail the electrodynamic behavior of the outer atmosphere in the presence 
of a constant dipole magnetic field. We shall here approach the problem from a 
different point of view, however, concentrating our attention (as we did in our 
previous studies2* 3, on the vorticity field and the current density. 

Consider an infinite mass of an electrically conducting fluid a t  rest, embedded in 
a constant dipole magnetic field H. To simplify the discussion, take the conductiv- 
ity as infinite (an approximation justified for a large-scale disturbance) and assume 
the fluid to be a homogeneous incompressible material. Assume that as a result 
of a perturbation, a velocity field v is produced in a certain region and that the 
magnetic field becomes H + h. The amplitude is assumed to be small enough for 
nonlinear terms to be neglected. We propose to investigate the magnetohydro- 
dynamic behavior of the fluid in terms of generalized Alfvkn waves by means of 
vorticity and current density. The equations obtained are complicated, however, 
and solutions will be discussed only for large distances from the center of the dipole. 
We shall conclude this note with an appendix where the geometry of lines of force 
is briefly discussed; the results obtained there are not all original, but are essential 
to an understanding of the subject, I 
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2. Fundamental Equations.-The equations relevant to the problem are 

bV 
dt 

bh - = (H*V)V - (v*V)H, 

(1) 

(2) 

(3) 

(4) 

PO - = -grad P + CcJ X H, 

at 

div v = 0, 

div h = 0, 

where po is the density (a constant), p the pressure, pe the permeability, j = 
(1/4r) curl h, and the electromagnetic variables are measured in emu; the condi- 
tion bH/bt = 0 (constant dipole) has been used in equation (2). 

Since curl H = 0, equation (1) can be rewritten as lolloivs: 

(5)  Po bV - = -grad ( p +  - ’) + [(H*V)h + (h-V)H]. at 

Taking the curl of terms of equations (5) and (2) we obtain 

2 p 0 -  = *curl [(H.V)h + (h.V)H], 

4~ - = curl [(H.V)v - (v.V)H], 

bo 
bt 4n 

dj 
dt 

where o = (l/*) curl v is the vorticity. 

curl [(H.V)h + (h.V)H] = 4n(H.V)j 

We have 

(7) 
4 

bH dH i>H + grad h, X - + grad h, X - + grad h, X - 
bX bY az 

dh bh ah + grad H ,  X - + grad H ,  X - + grad H ,  X -. (8) 
bX bY bz 

After some calculation, we obtain- 

curl [(H.V)h + (h.O)H] = 4r[(H.V)j - (j.V)H], (9) 

where the condition curl H = 0 has been used. 
Hence, equation (6) can be written 

On the other hand, 

curl [(H.V)v - (v.V)H] = 2(H.V)o 
dV bV b V  + grad H ,  X - + grad H ,  X - + grad H ,  X - 
dX bY dz 
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dH dH bH 
dX all bz 

- (grad u, X - + grad u, X - + grad u, X -). (11). 

However, in this case there is no simple way to write vcctorially equation (7) in a 
conipact form; we have for components the following ecluations 

I 

27r - = [(H*V)o], 
bt 

where eij  is the rate of deformation: eij = '/2[(but/dxj 5 du,/bx,) 1, and where again 
the condition curl H = 0 has been used. 

Propagation at Large Distances.-These equations are rather complicated. 
We may simplify them by observing that the derivatives of the components of the 
dipole magnetic field are of the order of r4, while these components themselves 
are of the order of r4 .  Therefore, for r sufficiently large, we may neglect the term 
(j  -V)H in equation (lo), and similarly we may neglect all terms such as (bH,/dy)e31, 
etc. in equations (12). Hence for r sufficiently large, equations (10) and (12) re- 
duce to 

3. 

and 

bj bo " bo bo 
bt bX bY dz 2~ - = H ,  - + H, - + Hz -. 

In  the second place, we have along a line of force 
, .  

dx dY az H , = H - - ,  H, = H -  H , =  H -  
ds ds' as' 

where H is the magnitude of the dipole magnetic field and s is the element of length 
of a line of force. 

Hence, along a line of force, equations (13) and (14) can be written 

bx ds by ds 
bj dx bj dy -- + -- + -- 

i 
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and 

that is 
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Observing that aH/bt = 0 (constant dipole), we obtain by crossdifferentiation 

where 

1 + 4 tanZ X 
= y2 

To6 cos10 X ' 
and where we put y 2  = p,2kf2/4?rco; thc other notations are given in appendix. 
We achieve the reduction of these equations by taking instead of s the magnetic 
latitude, A, as independent variable. We have 

and 

Now (see appendix) 

therefore, we have 

d2X 
ds2 

2(2 tan2 X - 1) tan X 
 TO^ COS' A (1 + 4 tan2 A ) 2 '  

- -  - 

On the other hand, 
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Substitution of these values in equation (20) gives 

We haw, of calirso, nn identical equation for j. 
Supposing that 

4 

we get 

d201 dol - + 7 tan X - + p2r08 cosi4 hal  = 0, 
dX2 dX 

where p2 = a 2 / y 2 .  
4. Integral Equations for Vorticity and Current Density.-Equation (3 1) can be 

transformed into an integra1 equation similar to that given by Dungey (loc. cit., p. 
33). In  order to do this, we use the identity 

1 d _If. [ sec g (ol seca A> 
dX 

1 dol 
dX + 7 tan X - + 3(1 4- 5 tan2 X)ol (32) 

By virtue of (32), equation (31) can be written 

1 d 
[sec X g (a1 sec3 X) = [3(1 + 5 tan2 A) sec X - @2r08 X]ol sec3 A, (33) 

dX 

or, by putting Q = o1 sec3 A, 

(sec X p) = [3(1 + 5 tan2 A) sec X - Ala. 
dX (34) 

Assuming that for X = 0, dQldX = 0, Le., dol/dX = 0, we obtain the following 
integral equation for Q(X) : 

Q(X) = Q(0) 

4 LA cos X'dA' LA' (3(1 + 5 tan2 A") see A" -p2rO8 X"]sZ(A")dh", (35) 

which, curiously enough, has the same form as the equation given by Dungey 
(Zoc. cit. p. 33) but is of vectorial character and includes an additional term 3(1 + 5 
tan2 X) sec A; the variables and assumptions used to arrive at  this result differ 
radically from those used by Dungey. 

Equation (35) 
may be integrated by successive approximations. 

The quantity J(X) = jl (A) sec3 A verifies the same equation (35). 
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dppendix.-The geometry of lines of force: As is well known, a dipole magnetic field hrrs com- 
yoiierita 

I 

where di is the magnetic moment of the dipole, r2 = I* + y2 + zl, ana the sign is chosen such that 
Zi, is positive in the xy-plane, which is the equatorial plane of the dipole; this requires that  the 
dipole have its negative pole directed upward (see Burgers'). The differential equations of lines 
of force are 

(37) 
dz dY dz - = - =  

-322 -3y2 x= + y2 - 222  

Integration of these equations gives 

where B and C are constants. of integration. 
We now introduce the polar coordinates 

x = 7 cos p cos x, 
y = r sin p cos A, 
z = r sin A, 

(39) 

where X designates the magnetic latitude. In these coordinates, the first equation (38) becomes 

COS) p cos2 X = B5 (40) 

To eliminate p, we write 

= c = tan p. (44) 

Hence equation (40) becomes 

r = To COSZX, (42) 

which is a well-known result; it  is obvious that the constant TO is the value of T for 
torial plane). 

= 0 (in equa- 

In  Cartesian coordinates, we have the following parametric equations of lines of force 

z = r sin X. J 
To calculate the linear element of these lines, we may use either equation (42) and then 

dsz = dr2 + r2dX2, (44) 

or the parametric equations (43) and then we have 

The result is 

dsz = d x l  + dyl + d z 2 .  

ds = r d x d l  + 4 tan' h. 

(45) 

(46) 

' I  

' 1  

The tangent to a line of force is defined by 
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dx 3 a=-=-- 
& d G  di + 4 tan2 xt 
9 :3 c sin A 

4ijq-i d1 + 4 tan2 x I I 
8 - d s - - -  

The radius of curvature R is given by 

Xftrr some calculations we find 
1 

Rz 
9(1 + 2 tanz X ) l  
rz(l + 4 tanz A)s' 

- =  

I n  the equatorial plane, 

.4s a verification of result (40), we may use the formula 

(r2 + r"')3'Z 

rl + 2r" - rr" 
R =  

PROC. N. A. S. 

(47) 

(511 

where r is given by (42). 

plane curves, is determined by 
The principal normal, which in our case reduces to the normal of lines of force since these are 

da cos x I - 2 tan2A 1 
d G  dl + 4  tnnlh) 1 

I 

a l =  R -  =i - ____ 

Q 
The binormal of the lines of force, of course, is the normal to  the planes y = Cz; therefore, its 

direction cosines are 
1 

& = - -  y1 = 0. (53) 
C 

ff2 = - dcz + 1 + d G '  
These values may also be calculated from the formulas 

a? = Byl - r&, etc. 
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